Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Infect Control Hosp Epidemiol ; 41(9): 1011-1015, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-2096316

ABSTRACT

OBJECTIVE: To determine whether ambient air pollutants and meteorological variables are associated with daily COVID-19 incidence. DESIGN: A retrospective cohort from January 25 to February 29, 2020. SETTING: Cities of Wuhan, Xiaogan, and Huanggang, China. PATIENTS: The COVID-19 cases detected each day. METHODS: We collected daily data of COVID-19 incidence, 8 ambient air pollutants (particulate matter of ≤2.5 µm [PM2.5], particulate matter ≤10 µm [PM10], sulfur dioxide [SO2], carbon monoxide [CO], nitrogen dioxide [NO2], and maximum 8-h moving average concentrations for ozone [O3-8h]) and 3 meteorological variables (temperature, relative humidity, and wind) in China's 3 worst COVID-19-stricken cities during the study period. The multivariate Poisson regression was performed to understand their correlation. RESULTS: Daily COVID-19 incidence was positively associated with PM2.5 and humidity in all cities. Specifically, the relative risk (RR) of PM2.5 for daily COVID-19 incidences were 1.036 (95% confidence interval [CI], 1.032-1.039) in Wuhan, 1.059 (95% CI, 1.046-1.072) in Xiaogan, and 1.144 (95% CI, 1.12-1.169) in Huanggang. The RR of humidity for daily COVID-19 incidence was consistently lower than that of PM2.5, and this difference ranged from 0.027 to 0.111. Moreover, PM10 and temperature also exhibited a notable correlation with daily COVID-19 incidence, but in a negative pattern The RR of PM10 for daily COVID-19 incidence ranged from 0.915 (95% CI, 0.896-0.934) to 0.961 (95% CI, 0.95-0.972, while that of temperature ranged from 0.738 (95% CI, 0.717-0.759) to 0.969 (95% CI, 0.966-0.973). CONCLUSIONS: Our data show that PM2.5 and humidity are substantially associated with an increased risk of COVID-19 and that PM10 and temperature are substantially associated with a decreased risk of COVID-19.


Subject(s)
Air Pollutants/toxicity , Air Pollution/adverse effects , Betacoronavirus , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Weather , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/statistics & numerical data , COVID-19 , China/epidemiology , Coronavirus Infections/etiology , Humans , Incidence , Pandemics , Pneumonia, Viral/etiology , Poisson Distribution , Retrospective Studies , Risk Factors , SARS-CoV-2
2.
Front Immunol ; 13: 918476, 2022.
Article in English | MEDLINE | ID: covidwho-2071085

ABSTRACT

Background: Deep venous thrombosis (DVT) highly occurs in patients with severe COVID-19 and probably accounted for their high mortality. DVT formation is a time-dependent inflammatory process in which NETosis plays an important role. However, whether ginsenoside Rg5 from species of Panax genus could alleviate DVT and its underlying mechanism has not been elucidated. Methods: The interaction between Rg5 and P2RY12 was studied by molecular docking, molecular dynamics, surface plasmon resonance (SPR), and molecular biology assays. The preventive effect of Rg5 on DVT was evaluated in inferior vena cava stasis-induced mice, and immunocytochemistry, Western blot, and calcium flux assay were performed in neutrophils from bone marrow to explore the mechanism of Rg5 in NETosis via P2RY12. Results: Rg5 allosterically interacted with P2RY12, formed stable complex, and antagonized its activity via residue E188 and R265. Rg5 ameliorated the formation of thrombus in DVT mice; accompanied by decreased release of Interleukin (IL)-6, IL-1ß, and tumor necrosis factor-α in plasma; and suppressed neutrophil infiltration and neutrophil extracellular trap (NET) release. In lipopolysaccharide- and platelet-activating factor-induced neutrophils, Rg5 reduced inflammatory responses via inhibiting the activation of ERK/NF-κB signaling pathway while decreasing cellular Ca2+ concentration, thus reducing the activity and expression of peptidyl arginine deiminase 4 to prevent NETosis. The inhibitory effect on neutrophil activity was dependent on P2RY12. Conclusions: Rg5 could attenuate experimental DVT by counteracting NETosis and inflammatory response in neutrophils via P2RY12, which may pave the road for its clinical application in the prevention of DVT-related disorders.


Subject(s)
COVID-19 , Venous Thrombosis , Animals , Ginsenosides , Mice , Molecular Docking Simulation , Neutrophils
3.
Sci Rep ; 11(1): 22796, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1758351

ABSTRACT

The current severe situation of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not been reversed and posed great threats to global health. Therefore, there is an urgent need to find out effective antiviral drugs. The 3-chymotrypsin-like protease (3CLpro) in SARS-CoV-2 serve as a promising anti-virus target due to its essential role in the regulation of virus reproduction. Here, we report an improved integrated approach to identify effective 3CLpro inhibitors from effective Chinese herbal formulas. With this approach, we identified the 5 natural products (NPs) including narcissoside, kaempferol-3-O-gentiobioside, rutin, vicenin-2 and isoschaftoside as potential anti-SARS-CoV-2 candidates. Subsequent molecular dynamics simulation additionally revealed that these molecules can be tightly bound to 3CLpro and confirmed effectiveness against COVID-19. Moreover, kaempferol-3-o-gentiobioside, vicenin-2 and isoschaftoside were first reported to have SARS-CoV-2 3CLpro inhibitory activity. In summary, this optimized integrated strategy for drug screening can be utilized in the discovery of antiviral drugs to achieve rapid acquisition of drugs with specific effects on antiviral targets.


Subject(s)
Antiviral Agents/analysis , Drug Evaluation, Preclinical/methods , SARS-CoV-2/drug effects , Biological Products/analysis , Biological Products/pharmacology , COVID-19/metabolism , Computational Biology/methods , Coronavirus 3C Proteases/drug effects , Coronavirus 3C Proteases/metabolism , Drug Discovery/methods , Flavonols/metabolism , Flavonols/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , COVID-19 Drug Treatment
4.
Lancet Respir Med ; 9(7): 747-754, 2021 07.
Article in English | MEDLINE | ID: covidwho-1433967

ABSTRACT

BACKGROUND: The consequences of COVID-19 in those who recover from acute infection requiring hospitalisation have yet to be clearly defined. We aimed to describe the temporal trends in respiratory outcomes over 12 months in patients hospitalised for severe COVID-19 and to investigate the associated risk factors. METHODS: In this prospective, longitudinal, cohort study, patients admitted to hospital for severe COVID-19 who did not require mechanical ventilation were prospectively followed up at 3 months, 6 months, 9 months, and 12 months after discharge from Renmin Hospital of Wuhan University, Wuhan, China. Patients with a history of hypertension; diabetes; cardiovascular disease; cancer; and chronic lung disease, including asthma or chronic obstructive pulmonary disease; or a history of smoking documented at time of hospital admission were excluded at time of electronic case-note review. Patients who required intubation and mechanical ventilation were excluded given the potential for the consequences of mechanical ventilation itself to influence the factors under investigation. During the follow-up visits, patients were interviewed and underwent physical examination, routine blood test, pulmonary function tests (ie, diffusing capacity of the lungs for carbon monoxide [DLCO]; forced expiratory flow between 25% and 75% of forced vital capacity [FVC]; functional residual capacity; FVC; FEV1; residual volume; total lung capacity; and vital capacity), chest high-resolution CT (HRCT), and 6-min walk distance test, as well as assessment using a modified Medical Research Council dyspnoea scale (mMRC). FINDINGS: Between Feb 1, and March 31, 2020, of 135 eligible patients, 83 (61%) patients participated in this study. The median age of participants was 60 years (IQR 52-66). Temporal improvement in pulmonary physiology and exercise capacity was observed in most patients; however, persistent physiological and radiographic abnormalities remained in some patients with COVID-19 at 12 months after discharge. We found a significant reduction in DLCO over the study period, with a median of 77% of predicted (IQR 67-87) at 3 months, 76% of predicted (68-90) at 6 months, and 88% of predicted (78-101) at 12 months after discharge. At 12 months after discharge, radiological changes persisted in 20 (24%) patients. Multivariate logistic regression showed increasing odds of impaired DLCO associated with female sex (odds ratio 8·61 [95% CI 2·83-26·2; p=0·0002) and radiological abnormalities were associated with peak HRCT pneumonia scores during hospitalisation (1·36 [1·13-1·62]; p=0·0009). INTERPRETATION: In most patients who recovered from severe COVID-19, dyspnoea scores and exercise capacity improved over time; however, in a subgroup of patients at 12 months we found evidence of persistent physiological and radiographic change. A unified pathway for the respiratory follow-up of patients with COVID-19 is required. FUNDING: National Natural Science Foundation of China, UK Medical Research Council, and National Institute for Health Research Southampton Biomedical Research Centre. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19/physiopathology , COVID-19/therapy , Hospitalization , Aged , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Respiratory Function Tests , Time Factors
5.
Sci Rep ; 11(1): 4495, 2021 02 24.
Article in English | MEDLINE | ID: covidwho-1101682

ABSTRACT

The COVID-19 pandemic caused by the novel SARS-CoV-2 is more contagious than other coronaviruses and has higher rates of mortality than influenza. Identification of effective therapeutics is a crucial tool to treat those infected with SARS-CoV-2 and limit the spread of this novel disease globally. We deployed a bioinformatics workflow to identify candidate drugs for the treatment of COVID-19. Using an "omics" repository, the Library of Integrated Network-Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID-19 drugs and publicly available SARS-CoV-2 infected cell lines to identify novel therapeutics. We identified a shortlist of 20 candidate drugs: 8 are already under trial for the treatment of COVID-19, the remaining 12 have antiviral properties and 6 have antiviral efficacy against coronaviruses specifically, in vitro. All candidate drugs are either FDA approved or are under investigation. Our candidate drug findings are discordant with (i.e., reverse) SARS-CoV-2 transcriptome signatures generated in vitro, and a subset are also identified in transcriptome signatures generated from COVID-19 patient samples, like the MEK inhibitor selumetinib. Overall, our findings provide additional support for drugs that are already being explored as therapeutic agents for the treatment of COVID-19 and identify promising novel targets that are worthy of further investigation.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning/methods , Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/metabolism , Computational Biology/methods , Databases, Factual , Drug Discovery/methods , Humans , Pandemics , Pharmaceutical Preparations , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Transcriptome/drug effects
7.
Clin Transl Med ; 11(2): e297, 2021 02.
Article in English | MEDLINE | ID: covidwho-1049592

ABSTRACT

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in December 2019 and has subsequently spread worldwide. Currently, there is no effective method to cure COVID-19. Mesenchymal stromal cells (MSCs) may be able to effectively treat COVID-19, especially for severe and critical patients. Menstrual blood-derived MSCs have recently received much attention due to their superior proliferation ability and their lack of ethical problems. Forty-four patients were enrolled from January to April 2020 in a multicenter, open-label, nonrandomized, parallel-controlled exploratory trial. Twenty-six patients received allogeneic, menstrual blood-derived MSC therapy, and concomitant medications (experimental group), and 18 patients received only concomitant medications (control group). The experimental group was treated with three infusions totaling 9 × 107 MSCs, one infusion every other day. Primary and secondary endpoints related to safety and efficacy were assessed at various time points during the 1-month period following MSC infusion. Safety was measured using the frequency of treatment-related adverse events (AEs). Patients in the MSC group showed significantly lower mortality (7.69% died in the experimental group vs 33.33% in the control group; P = .048). There was a significant improvement in dyspnea while undergoing MSC infusion on days 1, 3, and 5. Additionally, SpO2 was significantly improved following MSC infusion, and chest imaging results were improved in the experimental group in the first month after MSC infusion. The incidence of most AEs did not differ between the groups. MSC-based therapy may serve as a promising alternative method for treating severe and critical COVID-19.


Subject(s)
COVID-19/therapy , Menstruation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , SARS-CoV-2/metabolism , Adolescent , Adult , Aged , Allografts , COVID-19/blood , COVID-19/mortality , Critical Illness , Disease-Free Survival , Female , Humans , Male , Middle Aged , Severity of Illness Index , Survival Rate
8.
Physiol Genomics ; 52(9): 401-407, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-772149

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic, infecting over 16 million people worldwide with a significant mortality rate. However, there is no current Food and Drug Administration-approved drug that treats coronavirus disease 2019 (COVID-19). Damage to T lymphocytes along with the cytokine storm are important factors that lead to exacerbation of clinical cases. Here, we are proposing intravenous oxytocin (OXT) as a candidate for adjunctive therapy for COVID-19. OXT has anti-inflammatory and proimmune adaptive functions. Using the Library of Integrated Network-Based Cellular Signatures (LINCS), we used the transcriptomic signature for carbetocin, an OXT agonist, and compared it to gene knockdown signatures of inflammatory (such as interleukin IL-1ß and IL-6) and proimmune markers (including T cell and macrophage cell markers like CD40 and ARG1). We found that carbetocin's transcriptomic signature has a pattern of concordance with inflammation and immune marker knockdown signatures that are consistent with reduction of inflammation and promotion and sustaining of immune response. This suggests that carbetocin may have potent effects in modulating inflammation, attenuating T cell inhibition, and enhancing T cell activation. Our results also suggest that carbetocin is more effective at inducing immune cell responses than either lopinavir or hydroxychloroquine, both of which have been explored for the treatment of COVID-19.


Subject(s)
Adaptive Immunity/drug effects , Anti-Inflammatory Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Gene Expression Profiling , Oxytocin/analogs & derivatives , Pneumonia, Viral/drug therapy , T-Lymphocytes/drug effects , Adaptive Immunity/genetics , Betacoronavirus/immunology , COVID-19 , Cell Line , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Databases, Genetic , Host-Pathogen Interactions , Humans , Oxytocin/pharmacology , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , T-Lymphocytes/immunology , T-Lymphocytes/virology , Transcriptome , COVID-19 Drug Treatment
9.
Infect Dis Poverty ; 9(1): 108, 2020 Aug 03.
Article in English | MEDLINE | ID: covidwho-707705

ABSTRACT

BACKGROUND: The number of coronavirus disease 2019 (COVID-19) cases has rapidly increased all over the world. Specific information about immunity in non-survivors with COVID-19 is scarce. This study aimed to analyse the clinical characteristics and abnormal immunity of the confirmed COVID-19 non-survivors. METHODS: In this single-centered, retrospective, observational study, we enrolled 125 patients with COVID-19 who were died between January 13 and March 4, 2020 in Renmin Hospital of Wuhan University. A total of 414 randomly recruited patients with confirmed COVID-19 who were discharged from the same hospital during the same period served as control. The demographic, clinical characteristics and laboratory findings at admission, and treatment used in these patients were collected. The immunity-related risk factors associated with in-hospital death were tested by logistic regression models and Receiver Operating Characteristic (ROC) curve. RESULTS: Non-survivors (70 years, IQR: 61.5-80) were significantly older than survivors (54 years, IQR: 37-65) (P <  0.001). 56.8% of non-survivors was male. Nearly half of the patients (44.9%) had chronic medical illness. In non-survivors, hypertension (49.6%) was the most common comorbidity, followed by diabetes (20.0%) and coronary heart disease (16.0%). The common signs and symptoms at admission of non-survivors were fever (88%), followed by cough (64.8%), dyspnea (62.4%), fatigue (62.4%) and chest tightness (58.4%). Compared with survivors, non-survivors had higher white blood cell (WBC) count (7.85 vs 5.07 × 109/L), more elevated neutrophil count (6.41 vs 3.08 × 109/L), smaller lymphocyte count (0.69 vs 1.20 × 109/L) and lower platelet count (172 vs 211 × 109/L), raised concentrations of procalcitonin (0.21 vs 0.06 ng/mL) and CRP (70.5 vs 7.2 mg/L) (P < 0.001). This was accompanied with significantly decreased levels of CD3+ T cells (277 vs 814 cells/µl), CD4+ T cells (172 vs 473 cells/µl), CD8+ T cells (84 vs 262.5 cells/µl, P < 0.001), CD19+ T cells (88 vs 141 cells/µl) and CD16+ 56+ T cells (79 vs 128.5 cells/µl) (P < 0.001). The concentrations of immunoglobulins (Ig) G (13.30 vs 11.95 g/L), IgA (2.54 vs 2.21 g/L), and IgE (71.30 vs 42.25 IU/ml) were increased, whereas the levels of complement proteins (C)3 (0.89 vs 0.99 g/L) and C4 (0.22 vs 0.24 g/L) were decreased in non-survivors when compared with survivors (all P < 0.05). The non-survivors presented lower levels of oximetry saturation (90 vs 97%) at rest and lactate (2.40 vs 1.90 mmol/L) (P < 0.001). Old age, comorbidity of malignant tumor, neutrophilia, lymphocytopenia, low CD4+ T cells, decreased C3, and low oximetry saturation were the risk factors of death in patients with confirmed COVID-19. The frequency of CD4+ T cells positively correlated with the numbers of lymphocytes (r = 0.787) and the level of oximetry saturation (r = 0.295), Whereas CD4+ T cells were negatively correlated with age (r =-0.323) and the numbers of neutrophils (r = - 0.244) (all P < 0.001). CONCLUSIONS: Abnormal cellular immunity and humoral immunity were key features of non-survivors with COVID-19. Neutrophilia, lymphocytopenia, low CD4+ T cells, and decreased C3 were immunity-related risk factors predicting mortality of patients with COVID-19.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/mortality , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , China/epidemiology , Coronavirus Infections/blood , Coronavirus Infections/epidemiology , Female , Humans , Leukocyte Count , Logistic Models , Male , Middle Aged , Neutrophils/immunology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/epidemiology , ROC Curve , Retrospective Studies , Risk Factors , SARS-CoV-2 , Young Adult
10.
Front Med ; 14(5): 664-673, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-696783

ABSTRACT

The Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was identified in December 2019. The symptoms include fever, cough, dyspnea, early symptom of sputum, and acute respiratory distress syndrome (ARDS). Mesenchymal stem cell (MSC) therapy is the immediate treatment used for patients with severe cases of COVID-19. Herein, we describe two confirmed cases of COVID-19 in Wuhan to explore the role of MSC in the treatment of COVID-19. MSC transplantation increases the immune indicators (including CD4 and lymphocytes) and decreases the inflammation indicators (interleukin-6 and C-reactive protein). High-flow nasal cannula can be used as an initial support strategy for patients with ARDS. With MSC transplantation, the fraction of inspired O2 (FiO2) of the two patients gradually decreased while the oxygen saturation (SaO2) and partial pressure of oxygen (PO2) improved. Additionally, the patients' chest computed tomography showed that bilateral lung exudate lesions were adsorbed after MSC infusion. Results indicated that MSC transplantation provides clinical data on the treatment of COVID-19 and may serve as an alternative method for treating COVID-19, particularly in patients with ARDS.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections , Critical Care/methods , Mesenchymal Stem Cell Transplantation/methods , Pandemics , Pneumonia, Viral , Adult , Aged , Blood Cells/physiology , Blood Coagulation Tests/methods , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques/methods , Combined Modality Therapy , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Female , Humans , Male , Monitoring, Immunologic/methods , Oximetry/methods , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Preliminary Data , SARS-CoV-2 , Severity of Illness Index , Symptom Assessment/methods , Treatment Outcome , COVID-19 Drug Treatment
11.
Res Sq ; 2020 Apr 30.
Article in English | MEDLINE | ID: covidwho-671250

ABSTRACT

The COVID-19 pandemic caused by the novel SARS-CoV-2 is more contagious than other coronaviruses and has higher rates of mortality than influenza. As no vaccine or drugs are currently approved to specifically treat COVID-19, identification of effective therapeutics is crucial to treat the afflicted and limit disease spread. We deployed a bioinformatics workflow to identify candidate drugs for the treatment of COVID-19. Using an "omics" repository, the Library of Integrated Network-Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID-19 drugs and signatures of coronavirus-infected cell lines to identify therapeutics with concordant signatures and discordant signatures, respectively. Our findings include three FDA approved drugs that have established antiviral activity, including protein kinase inhibitors, providing a promising new category of candidates for COVID-19 interventions.

12.
Eur J Clin Microbiol Infect Dis ; 39(12): 2279-2287, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-638599

ABSTRACT

Recent reports have showed that a proportion of patients with Coronavirus Disease 2019 (COVID-19) presented elevated leukocyte count. Clinical data about these patients is scarce. We aimed to evaluate the clinical findings of patients with COVID-19 who have increased leukocyte at admission. We retrospectively collected the clinical data on the 52 patients who have increased leukocyte count at admission from the 619 patients with confirmed COVID-19 who had pneumonia with abnormal features on chest CT scan in Renmin Hospital of Wuhan University in Wuhan, China, from February 3 to March 3, 2020. The mean age of the 52 patients with increased leukocyte count was 64.7 (SD 11.4) years, 32 (61.5%) were men and 47 (90.4%) had fever. Compared with the patients with non-increased leukocyte count, the patients with increased leukocyte count were significantly older (P < 0.01), were more likely to have underlying chronic diseases (P < 0.01), more likely to develop critically illness (P < 0.01), more likely to admit to an ICU (P < 0.01), more likely to receive mechanical ventilation (P < 0.01), had higher rate of death (P < 0.01) and the blood levels of neutrophil count and the serum concentrations of CRP and IL-6 were significantly increased, (P < 0.01). The older patients with COVID-19 who had underlying chronic disorders are more likely to develop leukocytosis. These patients are more likely to develop critical illness, with a high admission to an ICU and a high mortality rate.


Subject(s)
Coronary Disease/diagnosis , Coronavirus Infections/diagnosis , Diabetes Mellitus/diagnosis , Hypertension/diagnosis , Leukocytes/pathology , Leukocytosis/diagnosis , Pneumonia, Viral/diagnosis , Aged , Betacoronavirus/pathogenicity , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronary Disease/blood , Coronary Disease/physiopathology , Coronavirus Infections/blood , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Critical Illness , Diabetes Mellitus/blood , Diabetes Mellitus/physiopathology , Female , Hospitalization/statistics & numerical data , Humans , Hypertension/blood , Hypertension/physiopathology , Intensive Care Units , Interleukin-6/blood , Leukocyte Count , Leukocytes/virology , Leukocytosis/blood , Leukocytosis/mortality , Leukocytosis/therapy , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Survival Analysis
13.
Sci Rep ; 10(1): 10263, 2020 06 24.
Article in English | MEDLINE | ID: covidwho-617065

ABSTRACT

COVID-19 is "public enemy number one" and has placed an enormous burden on health authorities across the world. Given the wide clinical spectrum of COVID-19, understanding the factors that can predict disease severity will be essential since this will help frontline clinical staff to stratify patients with increased confidence. To investigate the diagnostic value of the temporal radiographic changes, and the relationship to disease severity and viral clearance in COVID-19 patients. In this retrospective cohort study, we included 99 patients admitted to the Renmin Hospital of Wuhan University, with laboratory confirmed moderate or severe COVID-19. Temporal radiographic changes and viral clearance were explored using appropriate statistical methods. Radiographic features from HRCT scans included ground-glass opacity, consolidation, air bronchogram, nodular opacities and pleural effusion. The HRCT scores (peak) during disease course in COVID-19 patients with severe pneumonia (median: 24.5) were higher compared to those with pneumonia (median: 10) (p = 3.56 × 10 -12), with more frequency of consolidation (p = 0.025) and air bronchogram (p = 7.50 × 10-6). The median values of days when the peak HRCT scores were reached in pneumonia or severe pneumonia patients were 12 vs. 14, respectively (p = 0.048). Log-rank test and Spearman's Rank-Order correlation suggested temporal radiographic changes as a valuable predictor for viral clearance. In addition, follow up CT scans from 11 pneumonia patients showed full recovery. Given the values of HRCT scores for both disease severity and viral clearance, a standardised HRCT score system for COVID-19 is highly demanded.


Subject(s)
Coronavirus Infections/diagnostic imaging , Coronavirus Infections/pathology , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/pathology , Tomography, X-Ray Computed/methods , Adult , Aged , Betacoronavirus , COVID-19 , Female , Humans , Male , Middle Aged , Pandemics , Radiographic Image Interpretation, Computer-Assisted , Retrospective Studies , SARS-CoV-2
14.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-30424.v1

ABSTRACT

Background The outbreak of coronavirus disease 2019 (COVID-19) has rapidly spread all over the world. The specific information about immunity of non-survivors with COVID-19 is scarce. We aimed to describe the clinical characteristics and abnormal immunity of the confirmed COVID-19 non-survivors.Methods In this single-centered, retrospective, observational study, we enrolled 125 patients with COVID-19 who were died between Jan, 13 and Mar 4, 2020 from Renmin Hospital of Wuhan University. 414 randomly recruited patients with confirmed COVID-19 who were discharged from the same hospital during the same period served as control. Demographic and clinical characteristics, laboratory findings and chest computed tomograph results at admission, and treatment were collected. The immunity-related risk factors associated with in-hospital death were detected.Results Non-survivors were older than survivors. More than half of non-survivors was male. Nearly half of the patients had chronic medical illness. The common signs and symptoms at admission of non-survivors were fever. Non-survivors had higher white blood cell (WBC) count, more elevated neutrophil count, lower lymphocytes and platelete count, raised concentration of procalcitonin and C-reactive protein (CRP) than survivors. The levels of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ T cells, and CD16+56+T cells were significantly decreased in non-survivors when compared with survivors. The concentrations of immunoglobulins (Ig) G, IgA and IgE were increased, whereas the levels of complement proteins (C)3 and C4 were decreased in non-survivors when compared with survivors. Non-survivors presented lower levels of oximetry saturation at rest and lactate. Old age, comorbidity of malignant tumour, neutrophilia, lymphocytopenia, low CD4+ T cells, decreased C3, and low oximetry saturation were the risk factors of death in patients with confirmed COVID-19. The frequency of CD4+ T cells positively correlated with the numbers of lymphocytes and the level of oximetry saturation, whereas CD4+ T cells were negatively correlated with age and the numbers of neutrophils.Conclusion Abnormal cellular immunity and humoral immunity were considerable in non-survivors with COVID-19. Neutrophilia, lymphocytopenia, low CD4+ T cells, and decreased C3 were the immunity-related risk factors predicting mortality of patients with COVID-19.


Subject(s)
Fever , Neoplasms , Death , COVID-19 , Lymphopenia
SELECTION OF CITATIONS
SEARCH DETAIL